

Resources and Taster Activities Get ready for a successful start!

Subject:	A level Mathematics
Subject Context:	Pure maths, Statistics and Mechanics
Reading List:	Good algebra skills
Essential resources or equipment required for the course:	You will require a calculator that has statistical distributions for example, Casio FX-991 CW. There are graphical calculators as well. Don't buy anything yet we will give you more information when you start lessons.
Taster Activity:	Please see following pages for the activity on solving different equations, a key skill to be a successful A level maths student
Resources needed to complete the activity:	Paper, pen, calculator
Estimated time required to complete the activity:	2 hours
How you could extend your learning:	You can find more transition to A level mathematics essential skills at https://amsp.org.uk/teachers/11-16-maths/transition-to-level-3-maths/

When you study A level you will need to solve a variety of different equations

Linear equations and inequalities

Can you solve the following equations and inequalities?

Solving Linear 1

Solve the following:

1.
$$8x - 3 = 5x + 13$$

5.
$$14 \ge 8 + 5x$$

2.
$$3x + 1 > 10$$
 and $2x + 7 < 15$

6.
$$6-2x < 5x + 34$$

3.
$$3(x+6) > 12$$

$$\frac{7.}{7} = \frac{2x+3}{7} = \frac{4x-5}{3}$$

4
$$24 - 3x = 9$$

8. The perimeter of the rectangle is 24cm. Find the value of x

Resources and Taster Activities Get ready for a successful start!

Quadratic Equations

1. Quadratic equations are used to model situations such as the height of an object. When the object hits the ground what is the vale of *h*? Can you find the corresponding value of *t*.

Up in the air!

An object is launched from a cliff that is 58.8m high. The speed of the object is 19.6 metres per second (m/s).

The equation for the object's height h above the ground at time t seconds after launch is $h = -4.9t^2 + 19.6t + 58.8$ where h is in metres.

When does the object strike the ground?

2. Can you form and solve a quadratic equation to solve the problem below

Quadthagoras

Find the length, width and diagonal of this rectangle

Resources and Taster Activities Get ready for a successful start!

Other equations

Other Equations

Solve the following:

1.
$$3^x = 243$$

5.
$$3\sqrt{x} + 12 = 7\sqrt{x}$$

$$2^{2x+3} = 128$$

Hint: write 128 in terms of powers of 2

6.
$$\sin x = \frac{1}{2}$$
 $0 \le x \le 360$

3.
$$\sqrt{x+3} = 7$$

7.
$$\cos x = 0.866 \quad 0 \le x \le 360$$

4.
$$2\sqrt{x} = \sqrt{12}$$

8.
$$\frac{8}{3x+7} = 2$$

Problem solving: Form and solve equations

Piggy in the middle

The number in the middle of each group of 3 adjoining cells is the average of its two neighbours.

5 23

What number goes in the right hand cell?

Resources and Taster Activities

Get ready for a successful start!

Solving equations involving Trigonometry

Did you know?

Sunrise and sunset times are modelled using trigonometrical equations For San Diego, California, a simple equation to model daylight hours would be:

Number of daylight hours = $2.4 \sin(0.017t - 1.377) + 12$

where t is the day of year from 0 to 365

From the graph can you tell which dates of the year are the shortest and longest day?

Are up for the challenge? how about having a go at the problem below.

Multiple Equations

If
$$\frac{ab}{a+b} = \frac{1}{4}$$
 and $\frac{bc}{b+c} = \frac{1}{2}$ and $\frac{ac}{a+c} = \frac{1}{8}$ find a, b and c